

- Name...

- (For Question 1) Fill your answers in the tables below:

- Instructions:

1. No Calculators.
2. Mobiles Off.
3. BZU ID On Your Desk.
4. No Cheating At All.
5. Time Limit: 60 Minutes.

Question 1. (12 points) Circle the best answer.

$$
\text { Root Test }=E_{2}
$$

1. The series $\sum_{n=1}^{\infty}\left(\frac{4 n+3}{3 n-2}\right)^{n}$
$\lim _{n \rightarrow \infty}\left(\frac{4 n+5}{3 n-2}\right)^{\frac{\sqrt[4 n]{5}}{5}}$
a) Converges by root test
(b) Diverges by root test
$\because=$ 䖽
c) Converges by integral test
d) Diverges by alternating series test
2. If we approximate e^{x} by $1+x+\frac{x^{2}}{21}$, then the error in estimating e^{-1} is
a) less than $\frac{1}{2}$
b) less than $\frac{1}{2 e}$.
$e^{x}=1+x+\frac{x^{2}}{2!}$
$e^{x}=\frac{x^{n}}{n!}$
$\vec{x}=-1$
$\vec{a}=0$
$n=2$
c) less than $\frac{1}{6}$
(d) Jess than $\frac{1}{e}$

$a<c<x$

$$
0<0<-1
$$

3. The radius of convergence of the series $\sum_{n=0}^{\infty}(n+1)!(x-4)^{n}$ is
a) $R=0$
b) $R=1$
c) $R=\frac{1}{x}$
(d) $R=\infty$

$$
=\sum_{n=1}^{n} \frac{(-1)^{n}}{\sqrt{n}}
$$

4. The series $\sum_{n=1}^{\infty} \frac{\cos n \pi}{\sqrt{n}}$
(a) Converges absolutely
b) Converges conditionally
c) Diverges by alternating series test
d) Diverges by nth term test
5. $1+\pi+\frac{\pi^{2}}{2!}+\frac{\pi^{3}}{3!} \div \cdots=$
a) 0
b) -1
c) e^{π}
d) None of the above

Rate roper

(a) Converges by limit comparison with $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{5}}}, \frac{x}{3!} \frac{x}{5!}$
b) Converges by direct comparison with $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{5}}} x^{2} 3$
c) Converges by limit comparison with $\sum_{n=2}^{\infty} \frac{1}{n^{3}}$
d) Diverges by limit comparison with $\sum_{n=2}^{\infty} \frac{1}{\sqrt[1]{n}}$
7. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{r^{p}}$ converges conditionality if
a) $0<p<1$
b) $0 \leq p<1$
\rightarrow c) $0<p \leq 1$
(d) $0 \leq p \leq 1$
8. The series $\sum_{n=1}^{\infty} \frac{: 1}{\sqrt{\pi}(\sqrt{n}+1)}$
(a) Converges by integral tess
(.h). Diverges by integral test
; c) Converges by nth term test
d) None of the above

$$
-\frac{1}{2}\left(-\frac{1}{2}-1\right)\left(-\frac{3}{2}-\frac{2}{2}\right)^{\frac{c}{2}}(1+x)^{-\frac{1}{2}}
$$

9. The binomial series of $\frac{1}{\sqrt{1+x}}$ is

Converges

10. The Maclaurin series generated by $x \sin x^{2}$ is

11. The Taylor polynomial of order 3 generated by $f(x)=\varepsilon^{2 x}$ about $a=0$ is
a) $P_{3}(x)=1+2 x+x^{2}$
(b) $P_{3}(x)=1+2 x+2 x^{2}+\frac{4}{3} x^{3}$.

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

c) $P_{3}(x)=1+x+2 x^{2}+\frac{4}{3} x^{3}$
d) $P_{3}(x)\left(=1+x+x^{2}\right.$?
12. The series $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$
a) Converges by ratio test
(b) iberges by ratio test
c) Converges to 4
d) Converges by root test

$$
\frac{1}{x_{0} n^{2}}=0 \rightarrow \lim _{n \rightarrow \infty}
$$

$$
e^{2 x}=
$$

Question 2. (4 points) Given that co
(a) Find the Maclaurin series of $\cos x^{3}$.

$$
\cos x^{3}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(2 n)!}
$$

(b) Use part (a) to estimate $\int_{0}^{1} \cos z^{3} d x$ with error less than 0.01

$$
\begin{aligned}
\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!} & =\int_{0}^{1} 1+-\frac{x^{6}}{2!}+\frac{x^{12}}{4!}-\frac{x^{18}}{6!} \\
& \left.=x-\frac{x^{7}}{7(2!)}+\frac{x^{13}}{15(4!)}-\frac{x^{19}}{19(6!)}\right]_{0}^{1}
\end{aligned}
$$

Question 3. (2 points) Express $\frac{1}{(1+x)^{2}}$ as a power series and ind its radius of convergence.

Question 4. (2 points Use series to find $\lim _{x \rightarrow 0} \frac{\sin x}{e^{-x}-1}$

$$
\frac{-1}{1+x^{2}}=\sum_{n=1}^{\infty}(-1)^{n}(n x)^{n-1} \because \ldots
$$

$$
\frac{1}{1+x^{2}}=\sum_{n=1}^{\infty}(n x)^{n-1}
$$

$$
\begin{aligned}
& \text { by Ratio Test } \\
& \lim _{n \rightarrow \infty}\left|\frac{(n+1) x)^{n}}{(n x)^{n-1}}\right| \Rightarrow x \cdot\left|\frac{n+1)^{n} x^{n}}{n^{n-1} x^{n-1}}\right| \\
& |x| \lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n-1}}
\end{aligned}
$$

BONUS. (2 points) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^{n} n!}{(1)(3)(5) \ldots(2 \dot{n}-1)}$.

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty} x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \Rightarrow e^{-x}=\frac{(-1)^{n}\left(x^{n}\right)}{n!}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{x\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-1+\frac{x}{2!}-\frac{x^{2}}{3!}-\right)}{x}=-1
$$

Birzeit University
Mathematics Department
Math 132
Final Exam

First Summer Semester 2012/2013
\qquad

Question 1. (60%) Circle the most correct answer:
(1) The volume of the solid generated by revolving the region boundsd by $y=\sqrt{x}, x=1$, and the x-axis, about the y-axis, is:
(a) $\frac{3 \pi}{5}$
(b) $\frac{\pi}{5}$
(c) $\frac{2 \pi}{5}$
(d) $\frac{4 \pi}{5}$
(2) $\sum_{n=2}^{\infty}(0.5)^{-n}=$
(a) 2
(b) 1
(c) $\frac{1}{2}$
(d) None of the above
(3) $\int_{0}^{\frac{\pi}{2}} \tan x d x=$
(a) 0
(b) -1
(c) ∞
(d) $-\infty$
(4) If y is the solution of the differential equation $\frac{d y}{d x}=3 x^{2} y+y, y(\mathbb{1})=e$, then $y(-1)=$
(a) -1
(b) -3
(c) e^{-1}
(d) e^{-3}
(5) $\int_{1}^{4} \frac{3^{\sqrt{x}}}{2 \sqrt{x}} d x=$
(a) $\frac{6}{\ln 3}$
(b) $\frac{3}{\ln 3}$
(c) $\frac{78}{\ln 3}$
(d) $\frac{9}{\ln 3}$
(6) The volume of the solid whose base is the region enclosed between the curves $y=x^{2}$ and $y=x$, and whose cross sections perpendicular to the x-axis are equilateral triangles of height 4 , is:
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{6}$
(d) $\frac{1}{4}$
(7) If $a_{n}=n 3^{\frac{2}{n}}, n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n}=$
(a) 1
(b) 0
(c) ∞
(d) $\ln 3$
(8) $\sum_{n=2}^{\infty} \frac{2 n-1}{n^{2}(n-1)^{2}}=$
(a) -1
(b) 1
(c) $\frac{1}{4}$
(d) 2
(9) Assuming its convergence, find the limit of the following recursively defined sequence, $a_{1}=8$,
$a_{n+1}=\sqrt{a_{n}+8}-2$:
(a) 1
(b) -4
(c) -2
(d) 8
10) $\int e^{\sqrt{2 x+1}} d x=$
(a) $2 \sqrt{2 x+1} e^{\sqrt{2 x \div 1}}+C$
(b) $\frac{e^{\sqrt{2 x+1}}}{2 \sqrt{2 x+1}} \div C$
(c) $\sqrt{2 x+1} e^{\sqrt{2 x+1}}-e^{\sqrt{2 x+1}}+C$
(d) $\sqrt{2 x+1} e^{\sqrt{2 x+1}}-\sqrt{2 x+1}+C$
(11) If $\tanh x=\frac{1}{2}, x<0$, then $\operatorname{sech} x=$
(a) $\frac{\sqrt{5}}{2}$
(b) $\frac{-\sqrt{5}}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{-\sqrt{3}}{2}$
(12) Which one of the following functions is the fastest growing as $x \rightarrow \infty$:
(a) $e^{\frac{\overline{3}}{2}}$
(b) $\ln (\ln x)$
(c) 3^{z}
(d) $4+2^{x}$
(13) The series $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n}+2^{n}}$:
(a) Converges by direct comparison with $\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n}}$
(E) Converges by direct comparison with $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$
(c) Converges by direct comparison with $\sum_{n=0}^{\infty} \frac{3^{n}}{7^{n}}$
(d) Converges by summing its terms as a geometric series
(14) The series $\sum_{n=2}^{\infty} \frac{(n+1) \ln n}{\sqrt{n}}$:
(a) Converges by the integral test
(b) Converges by direct comparison with $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$
(c) Diverges by the ratio test
(d) Diverges by the n th-term test
(15) If $a_{n}=\left(1-\frac{2}{n}\right)^{\frac{n}{2}}, n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n}=$
(a) e^{-2}
(b) e^{-1}
(c) e^{-4}
(d) $e^{\frac{-1}{2}}$
(16) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)(n+3)}}$:
(a) Converges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^{4}}}$
(b) Converges by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$
(c) Converges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^{3}}}$
(d) Diverges by the ratio test
(17) $i^{215}=$
(a) i
(b) $-i$
(c) 1
(d) -1
(18) The integral $\int_{2}^{\infty} \frac{d x}{\sqrt[3]{x}(\sqrt{x}-1)}$:
(a) Converges by limit comparison with $\int_{2}^{\infty} \frac{d x}{\sqrt[3]{x}}$
(b) Converges by limit comparison with $\int_{2}^{\infty} \frac{d x}{\sqrt{x}}$
(c) Diverges by direct comparison with $\int_{2}^{\infty} \frac{d x}{\sqrt[3]{x^{2}}}$
(d) Diverges by direct comparison with $\int_{2}^{\infty} \frac{d x}{\sqrt[6]{x^{5}}}$
(19) The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{e^{n}(x-1)^{n}}{n^{2} 3^{n}}$ is:
(a) $\frac{3}{e}+1$
(b) $\frac{e}{3}+1$
(c) $\frac{3}{e}$
(d) $\frac{e}{3}$
(20) $\int_{0}^{1} x^{2} \ln x d x=$
(a) $\frac{-1}{4}$
(b) $\frac{-1}{9}$
(c) ∞
(d) $-\infty$
(21) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(\sqrt{n}+n)}{\sqrt{n^{5}+1}}$:
(a) Converges absolutely
(b) Converges conditionaliy
(c) Diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$
(d) Diverges by the π th-term test
(22) $\int_{1}^{\sqrt{3}} \frac{d x}{x \sqrt{x^{2}+1}}=$
(a) $\ln \left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$
(b) $\ln \left(\frac{\sqrt{2}}{\sqrt{3}+1}\right)$
(c) $\ln \left(\frac{\sqrt{2}+1}{\sqrt{3}}\right)$
(d) $\ln \left(\frac{\sqrt{3}}{\sqrt{2} \div 1}\right)$
(23) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}} \sec ^{2} x \tan ^{2} x d x=$
(a) $\frac{-26}{9 \sqrt{3}}$
(b) $\frac{28}{9 \sqrt{3}}$
(c) $\frac{-13}{3 \sqrt{3}}$
(d) $\frac{20}{3 \sqrt{3}}$
(24) A partial fraction for the function $f(x)=\frac{3 x+1}{x^{3}-8}$ is:
(a) $\frac{A}{x-2}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$
(b) $\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{x+2}$
(c) $\frac{A}{x-2}+\frac{B x+C}{x^{2}-2 x+4}$
(d) $\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+4}$
(25) The series $\sum_{n=2}^{\infty}\left(\frac{n}{n 2^{2}-1}\right)^{n^{2}}$:
(a) Converges by summing its terms as a telescoping series
(b) Converges by the n ih-term test
(c) Converges by the root tesi
(d) Diverges by direct companison withe $\sum_{n=2}^{\infty} \frac{1}{\sqrt[n]{n}}$
(26) $\frac{4-i}{1+i}=$
(a) $\frac{3}{2}-\frac{5}{2} i$
(b) $\frac{3}{2}+\frac{5}{2} i$
(c) $\frac{5}{2}-\frac{3}{2} i$
(d) $\frac{5}{2}+\frac{3}{2} i$
(27) The series $\sum_{n=3}^{\infty} \frac{\sqrt{\ln n}}{n^{1.1}}$:
(a) Converges by limit comparison with $\sum_{n=3}^{\infty} \frac{1}{n^{1.05}}$
(b) Converges by limit comparison with $\sum_{n=3}^{\infty} \frac{1}{n^{1.1}}$
(c) Converges by direct comparison with $\sum_{n=3}^{\infty} \frac{1}{\pi^{0.95}}$
(d) Diverges by the ratio test
(28) If $x=\ln (\sec t+\tan t), y=t \sec t,-\frac{\pi}{2}<t<\frac{\pi}{2}$, then $\left.\frac{d^{2} y}{d x^{2}}\right|_{t=\frac{\pi}{4}}=$
(a) $\frac{\pi}{2}+1$
(b) $\frac{\pi}{2 \sqrt{2}}+\frac{1}{\sqrt{2}}$
(c) $\frac{\pi}{4}+1$
(d) None of the above
(29) The series $\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n-1})$:
(a) Converges absolutely
(b) Converges conditionally
(c) Diverges by the π th-term test
(d) Diverges by direct comparison with $\sum_{n=1}^{\infty}(-1)^{n} \sqrt{n}$
(30) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1) 2^{n+1}}=$
(a) $\ln \left(\frac{2}{3}\right)$
(b) $\ln \left(\frac{1}{3}\right)$
(c) $\ln \left(\frac{3}{2}\right)$
(d) $\ln \left(\frac{3}{4}\right)$

Question 2. (15%) (a) Use the binomial series to find out the first four nonzero terms of the $M_{a c l_{0}}$ rin series of $(1+x)^{\frac{2}{3}},-1<x<1$.
(b) (1) Find the Taylor series of $f(x)=\tan ^{-1}\left(3 x^{2}\right)$, about $a=0$, and specify its interval of conver-
gence.
(2) Use the above series to estimate the value of $\tan ^{-1}\left(\frac{1}{3}\right)$ with an error of magnitude less than
0.001 .

Question 3. (13\%) (a) Find the length of the parametric curve:

$$
x=t, \quad y=\frac{t^{2}}{2}, \quad 0 \leq t \leq 1
$$

(b) Shetch the parametric curve defined by the equations:

$$
x=3 \cos t, \quad y=2 \sin t, \quad-\frac{\pi}{2} \leq t \leq \pi
$$

Question 4. (12\%) (a) Find the four forth roots of -81.
(b) Solve the equation: $2|z-1-i|=|z+\bar{z}-2|$.

$$
\begin{align*}
& \text { The nodulas }=\frac{\sqrt{(-4)^{2}}+(8 \sqrt{3})^{2}}{64}=\frac{16}{} \\
& \text { The the } \tag{2i}
\end{align*}
$$

$$
\begin{aligned}
& \text { The modulus } \left.=\sqrt{64}+\frac{2 \pi}{3}\right] \\
& \left.\cos \theta=\frac{-8}{16}=-\frac{1}{2} \Rightarrow \theta=\cos ^{-1}\left(\frac{-8}{16}\right)=12 \theta=\left[\frac{2 \pi}{2}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\omega_{1}=2[\cos (120)+i \sin (120)]=2\left[-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right]=-1+i \sqrt{3} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \omega_{1}=2[\cos (120)+i \sin (120)]=212 \tag{18}\\
& w_{2}=2[\cos (210)+i \sin (210)]=2\left[-\frac{\sqrt{3}}{2}-\frac{1}{2}\right]=-\sqrt{3}-i \\
& \therefore
\end{align*}
$$

$$
\begin{aligned}
& w_{2}=2\left[\cos 2[\cos 300+i \sin 300]-2\left[\frac{1}{2}-\frac{i \sqrt{3}}{2}\right]=1-i \sqrt{3}\right. \\
& w_{3}=2
\end{aligned}
$$

$$
\begin{aligned}
& w_{0}=\sqrt{3}+i \\
& w_{1}=-i+i \sqrt{3} \\
& w_{3}=-\sqrt{3}: i \\
& w_{3}=i-i \sqrt{3}
\end{aligned}
$$

$$
\begin{align*}
& \int \frac{1}{x^{2} \sqrt{25-x^{2}}} d x \\
& \int \frac{5 \cos \theta d \theta}{25 \sin ^{2} \theta \sqrt{25-25 \sin ^{2} \theta}}(2) \tag{2}\\
& \frac{x=5 \sin \theta}{d x=5 \cos \theta d \theta} \\
& \frac{\text { 雷 }}{\sqrt{25-x^{2}}}:(2) \\
& \int \frac{5 \cos \theta d \theta}{25 \sin ^{2} \theta(5 \cos \theta)} \\
& \frac{1}{25} \int \csc ^{2} \theta d \theta \\
& =-\frac{1}{25} \cot (\theta)+C \tag{2}\\
& =-\frac{1}{25} \frac{\sqrt{25-x^{2}}}{x}+c
\end{align*}
$$

$$
\int_{0}^{\infty} t^{2} e^{-s t} d t
$$

$$
\begin{aligned}
& \lim _{3 \rightarrow \infty} \int_{0}^{B} t^{2} e^{s t} d t \\
& =\lim _{\beta \rightarrow \infty}\left[-\frac{t^{2}}{s e^{6 s t}}-\frac{2 t}{s^{3} e^{s t}}-\frac{2}{s^{3} e^{+s t}}\right]_{0}^{B} \\
& =\lim _{B \rightarrow \infty} \frac{-B^{2}}{s e^{3 B}}-\frac{2 B}{s^{3} e^{5 B}}-\frac{2}{s^{3} e^{s B}}-\left(0-0-\frac{2}{s^{3}}\right] \\
& =\frac{2}{S^{3}}
\end{aligned}
$$

$$
\sum_{k=0}^{\infty} \frac{k^{2}}{2^{3 k}}(x+4)^{k}
$$

By Ratio test

$$
\begin{aligned}
& \text { By Raliotest } \\
& \operatorname{Lim}_{k \rightarrow \infty}\left|\frac{\frac{(k+1)^{2}}{2^{3(k+1)}}(x+4)^{k+1}}{\frac{k^{2}}{2^{3 k}}(x+4)^{k}}\right|<1 \\
& =\operatorname{Lim}_{\frac{(k+1)^{2}}{k^{2}}\left(\frac{1}{2^{3}}\right)|x+4|<1}^{=} \operatorname{Lim} \frac{1}{8}|x+4|<1 \\
& =|x+4|<8 \\
& =-8<x+4<8
\end{aligned}
$$

When $\left.x=-12 \quad \sum_{k=0}^{\infty} \frac{k^{2}}{2^{3 k}}(-12+4)^{k}=\sum \frac{k^{2}}{(8)^{k}}(8)^{k}=\sum_{k=0}^{e}(-1)\right)^{2}$

$$
\operatorname{Lim}_{k \rightarrow \infty} k^{2}=\infty \text { div. }
$$

when $x=4 \quad \sum_{k=0}^{\infty} \frac{k^{2}}{2^{3 k}}(y+4)^{k}=\sum_{k=0}^{\infty} k^{2}$
$\lim k^{2}=\infty$ div
the intense of civ. $(-12,4)$

Consider the test form the first column and the result form the second column

1. geometric series
2. p -series
3. telescoping series
4. the nth-term test
5. the integral test
6. alternating series test
7. the direct comparison test-
8. the limit comparison test
9. the ratio test
10. the root test
a. converges absolutely
b. converges conditionally
c. diverges
solve hm details then circle the correct answer

$$
\begin{aligned}
& \text { 1. radius of cent. } \\
& \sum_{k=1}^{\infty} \frac{2^{k}(x-3)^{k}}{\sqrt{k+3}}=\operatorname{Lim}\left|\frac{2^{k+1}(x-3)^{k+1}}{\sqrt{k+4}} \cdot \frac{\sqrt{k+3}}{2^{k}(x-3)^{k}}\right|<1 \\
& \text { (.). } \frac{1}{2} \\
& =\operatorname{Lim} 2|x-3| \frac{\sqrt{k+3}}{\sqrt{k+4}}<1 \begin{array}{|c}
-\frac{1}{2}<x-3<\frac{1}{2} \\
\frac{5}{2}<x<\frac{x_{2}}{2}
\end{array} \\
& =2|x-3|<1 \\
& \text { c. } \frac{19}{6} \\
& |x-3|<\frac{1}{2} \\
& x=\frac{5}{2} \text { bo coins. } \\
& \text { by alternating } \\
& x=\frac{7}{2} \text { div. } \\
& \text { 2. } \sum_{k=1}^{\infty} \frac{\sin k}{k^{2}+1} \quad a_{k}=\left|\frac{\sin k}{k^{2}+1}\right| \leqslant \frac{1}{k^{2}+1} \leqslant \frac{1}{k^{2}} \quad \text { by visit anpetest } \\
& \begin{array}{c}
\text { a. divergent by } p \text { - series } \\
\text { b. divergent by } \\
\sum+k^{2} \\
\text { convert }
\end{array} \\
& \begin{array}{c}
\text { b. divergent by geometric series } \\
\text { c. converges conditionally } \\
\text { (i) } \\
\text { Lat Give by D.C.T. }
\end{array} \\
& \text { © © converges absolutely } \\
& \text { 1) Let } a_{F}=\frac{1}{\sqrt{k+1}}>0
\end{aligned}
$$

3. $\sum_{k=0}^{\infty}\left(\frac{(-1)^{k}}{\sqrt{k+1}}\right)=$
2) $f(x)=\frac{1}{\sqrt{x+1}}=(x+i)^{-1 / 2}$
a. divergent by the ratio test
b. divergent by the nth-root test c. converges conditionally

$$
f^{\prime}(x)=\frac{-1}{2 \sqrt{(x+1)^{3}}}<0
$$

de creasing series
Let $b_{k}=\frac{1}{\sqrt{k}}=\frac{1}{k^{\sqrt{2}}}$
$\lim \frac{a_{k}}{b_{k}}=\lim \frac{\sqrt{k}}{\sqrt{k+1}}=1$
Ebsi-div-p-series
$\Rightarrow \sum a_{k}$ div. by limitcot.
$\left\{\begin{array}{l}\text { 3) } \operatorname{Lin} a_{k}=0 \\ \sum(-1)^{k} a_{k} \text { conv. altering series } \\ \hdashline \cdots\end{array}\right.$
4. $\sum_{k=2}^{\infty} \frac{(-1)^{k} \sqrt{k}}{\ln k}=$

a. divergent by the direct comparison test. By $k-$ th hermes $\frac{1}{2}$. ${ }^{\text {(G) }}$ divergent by the kth-term test c. converges absolutely
d. converges conditionally

The serves div.
6. $\sum_{k=0}^{\infty} \frac{(-2)^{3 k-1}}{9^{k}}=\sum_{k=0} \frac{(-2)^{-1}\left((-2)^{3}\right)^{k}}{9^{k}}=\sum_{k=0}-\frac{1}{2}\left(\frac{-8}{9}\right)^{k}$
b. $\frac{9}{7}$

$$
=-\frac{1}{2}\left[\frac{1}{1-C-\frac{8}{8}}\right]
$$

c. $\frac{-9}{7}$
(c.) $\frac{-9}{34}$

$$
\begin{aligned}
& =-\frac{1}{2}\left[\frac{1}{1+\frac{8}{9}}\right] \\
& =-\frac{1}{2}\left[\frac{9}{9+8}\right]=\frac{-7}{34}
\end{aligned}
$$

$$
\text { 7. } \sum_{k=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^{2}}=\quad \int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} d x
$$

(3) convergent by the integral test b divergent by limit comparison test c. convergent by telescoping series d. divergent by by direct comparison test
$e^{\frac{1}{x}} \frac{1}{x^{2}} \operatorname{con} t .,+i v, 2 e c$.

$$
\begin{align*}
& d u=\frac{-1}{x^{2}} d x \\
& \left.-\int_{1}^{0} e^{4} d x=\right]^{4} \\
& \left.=\int_{0}^{1} e^{u} d u=e^{u}\right]_{0}^{1} \\
& =e-1 \tag{6}
\end{align*}
$$

$$
\text { 8. } \sum_{k=1}^{\infty} \frac{\cos \left(\frac{k \pi}{6}\right)}{k \sqrt{k}}=
$$

$$
a_{k} \leq \frac{|\cos k \pi|}{k \sqrt{k}} \leqslant \frac{1}{k^{3 / 2}}=b_{k}
$$

$$
\sum b_{k} c e n v \cdot p \text {-series } \Rightarrow \sum a_{k} \operatorname{con} \text { by } D C T .
$$

a. divergent by the direct comparison test
b. divergent by the kth-term test
C. converges absolutely
d. converges conditionally

Let $y=(\cos 3 x)^{5 / x} \Rightarrow \operatorname{Ln} y=\frac{5 \ln (\cos 3 x)}{x}$
9.. $\lim _{x \rightarrow 0}(\cos 3 x)^{\frac{5}{x}}=$
al 1

$$
\operatorname{Lim}_{x \rightarrow 0} \ln y=\operatorname{Lim} \frac{5 \operatorname{lig}^{5} \cos 3 x}{x}=\operatorname{Lim} \frac{-15 \tan 3 x \mid}{1}=0
$$

c. $\frac{1}{2}$

$$
\therefore \quad \operatorname{Lin} y=\operatorname{Lin} e^{\operatorname{Ln} y}=e^{0}=1
$$

d. ∞
10. $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}=$. Let $y=(1-2 x)^{\frac{1}{x}}$
a. does not exit
b. e^{e-2}

C e^{-2}

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\operatorname{Ln}(1-2 x)^{x}}{x} \\
& \lim _{x \rightarrow 0} \frac{-2}{1-2 x}=-2 \\
\Rightarrow & \operatorname{Lim}(1-2 x)^{\frac{1}{x}}=\operatorname{Lim} e^{y}=e^{-2} .
\end{aligned}
$$

d. $\frac{2}{e}$

$$
\operatorname{Ln} y=\frac{\operatorname{Ln}(1-2 x)}{x}
$$

11. the sequence $a_{n}=\frac{\ln \left(2+e^{n}\right)}{3 n} \quad \operatorname{Lim} \frac{\operatorname{Ln}\left(2+e^{n}\right)}{3 n}$
a. converges to $\frac{2}{3}$
(b) converges to $\frac{1}{3}$
c. converges to 0
d. divergent sequences

$$
\begin{aligned}
& \operatorname{Lim} \frac{e^{3 n}}{\frac{2+e^{n}}{3}}=\operatorname{Lim} \frac{e^{n}}{6+3 e^{n}} \\
& =\operatorname{Lim} \frac{e^{n}}{3 e^{n}}=\frac{1}{3}
\end{aligned}
$$

12. $\int \frac{2 x^{2}-3 x+2}{x^{3}+x}$ CAN BE INTERATED BY PARTIAL FRACTION
(a.) $\frac{A}{X}+\frac{B X+C}{X^{2}+1}$
b. $\frac{A}{X}+\frac{B}{X^{2}+1}$
c. $\frac{A}{X}+\frac{C}{X^{2}+1} \div \frac{D}{X^{2}}$
d. $\frac{A}{X}+\frac{B X^{2}+C}{X^{3}}$
13. $\int_{0}^{1} \tan ^{-1}(x) d x \quad \therefore \quad u=\tan ^{-1} x$
a. 1
b. δ
c. $\frac{\pi}{4}$
(d. $\frac{\pi}{4}-\frac{1}{2} \ln 2$

$$
x d^{-1}
$$

$$
\begin{aligned}
& x+\sin -\sqrt{1+x^{2}} \\
& x \tan x
\end{aligned} \frac{\left.1+\tan \left(1+x^{2}\right)\right]_{0}^{1}}{x}
$$

$$
\tan _{-1}^{-1} \rightarrow \tan ^{-1}(0) \rightarrow\left[\frac{1}{2} \ln 2-\frac{1}{2} \ln 1\right]
$$

14. $\int_{1}^{e^{\frac{\pi}{2}}} \frac{\cos (\ln x)}{x} d x$ $=\pi / 4-\frac{1}{2} \log 2$
$u=\ln x$
$d x=\frac{1}{x} d x$
(6)
c. 0
d.e
(15.) $\int_{0}^{1} \frac{x}{1+3 x} d x$
(a.) $\frac{1}{3}-\frac{1}{3} \operatorname{Lity}=\frac{1}{3} \frac{3(x)+1}{1+3 x} d x-\int_{0}^{1+3 x} \frac{1}{1+3} d x$.
d. $\left.\left.1 / 3+\frac{2}{3} \operatorname{Ln}=\frac{1}{3} x\right]_{0}^{1}-\frac{j}{3} \ln (1+1+3 x)\right]_{0}^{1}$

$$
\because \quad \cdots \frac{-1}{3}=\frac{1}{3} \ln 4
$$

$$
\begin{aligned}
& \text { 16. } y^{\prime}=e^{\sinh x} \\
& y^{\prime}=\cosh x \\
& y^{\prime}=\cosh x e^{\sinh x}
\end{aligned}
$$

c. $y^{\prime}=\sinh x e^{\sinh x}$
d. $y^{\prime}=e^{\cosh x}$
17. the center of the ellipse

$$
4 x^{2}+y^{\dot{z}}-8 x+4 y-8=0
$$

Is
b. $(4,2)$
c. $(1,2)$
d $(1,-2)$

$$
\left(x^{2}-2 x+1\right)+\left(y^{2}+4 y+4\right)=8+4+4
$$

$$
\begin{gather*}
4(x-1)^{2}+(y+2)^{2}=16 \tag{2,4}\\
\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1
\end{gather*}
$$

18.the equation of the asymptotes for the hyperbola

$$
4 x^{2}-3 y^{2}+8 x+16=0
$$

(6) $y=\frac{2}{\sqrt{3}}(x+1)$ and $y=-\frac{2}{\sqrt{3}}\left(x_{i}+1\right)$
b. $y=\frac{2!}{\sqrt{3}}(x) \quad$ and $\quad y=-\frac{2}{\sqrt{3}}(x)$.

$$
\frac{4}{4} \frac{(x+1)^{2}}{3}=1
$$

c. $y-1=\frac{2}{\sqrt{3}}(x)$ and $\quad y-1=-\frac{2}{\sqrt{3}}(x)$ $a=2$
$b=\sqrt{3}$
d. $y=(x-1)$ and. $y=-(x-1)$
19. the focus of the parabola $2 y \pm 1-x-x^{2}$ is a. $(0,0)$
(b.) $\left(-1, \frac{1}{2}\right)$
c. $(1,-1)$

$$
\begin{aligned}
& (x+1)^{2}=-2(y-1) \\
& (x-k)^{2}=4 p\left(\frac{y}{4}-1\right) \\
& (k, k)=(-1,1) \\
& p=-\frac{1}{2} \\
& \left(\pi-4=\left(-12 \frac{1}{2}\right)\right.
\end{aligned}
$$

$$
\text { d. }\left(1, \frac{-1}{2}\right) \quad(k, k)=(-1,1)
$$

(19) the focus of the parabola $2 y=1-x-x^{2}$ is
a. $(0,0)$
(b.) $\left(-1, \frac{1}{2}\right)$

$$
x^{2}+x-1=-2 y
$$

c. $(1,-1)$
$x^{2}+x++\frac{\theta}{6}=-2 y+1+\frac{1}{4}$
d. $\left(1, \frac{-1}{2}\right)$

$$
\left(x+\frac{1}{2}\right)^{2}=-2\left(y-\frac{1}{4}\right)
$$

 Of order 3 centered at $a=1$ to estimate 1.2
(a.) $(0.2)^{1}$
b. $(1.2)^{3}$

$$
R_{3}=\frac{24(x-1)^{4}}{4!c^{5}}: 1 \leq c \leq 1.2
$$

c. 1
d. $\left(\frac{1}{1.2}\right)^{3}$

$$
\left|R_{3}\right| \leq(1-1.2)^{4}=(-2)^{y}
$$

$$
\frac{1}{f(x)=}=\sum_{n=0}^{\infty}(1-x)^{n}
$$

(a.) true
b. false

$$
f(x)=\frac{1}{i-(1-x)}=\sum_{n=0}^{\infty}(1-x)^{n}
$$

MATH DEPARTMENT

MATH 132 TEST THREE

TIME: 60 Min.
JANUARY 2008
NAME: George Hannunch NUMBER: 1061515 SECTION: 1 Instructor's name: Dr. Rimon

28 QUESTION ONE: METTLE CHOICE

30

1. Let $f(x)=\sum_{n=0}^{\infty} x^{n}$. The interval of convergence of the definite integral 0 to x,

10 $\int_{0}^{f} f(t) d t$ is
$\left.\frac{x^{n+1}}{n+1}\right|_{0} ^{n+1}=\frac{x^{x+1}}{y+1}$

(A) $x=0$ only
(B) $|x| \leq 1$

6 $\cos |1+x|$ 多

$$
\frac{x^{\mu-1}-x(x+1)}{x+1}
$$

2. The coefficient of x^{4} in the Maclaurin series for $f(x)=e^{-x / 2}$ is
(A) $-1 / 24$
(B) $1 / 24$
(C) $1 / 96$
(D) -11384
$\frac{(-1)^{n}=(x)^{n}}{2^{n 41} n!}$
$\frac{1!x^{4}}{324 \times 3 \times 2}$
$\frac{-1}{2 e^{\frac{3}{2}}}$

$$
\frac{4}{4 e^{\frac{x}{2}}}
$$

$\frac{1}{e^{\frac{x}{2}}}-\frac{e^{-\frac{x}{2}}}{\frac{e^{-\frac{x}{2}}}{4}}$

(C) $-\infty<x<\infty$
(D) $-1 \leq x<1$
(E) $-1<x<1$

$$
-\frac{1}{2}+\frac{2}{4}-\frac{1}{8}+\frac{1}{16}
$$

3. Which of the following series diverges?
(A) $\sum 1 / n^{2}$
(B) $\Sigma 1 /\left(n^{2}+n\right) \quad$ Co nv.
Co nv.
(C) $\operatorname{In} /\left(n^{3}+1\right)$
(D) $\sum \frac{n}{\sqrt{\left(4 n^{2}-1\right)}}$
(E) none of the preceding.
4. For which of the following series does the Ratio Test fail?
(A) $\Sigma 1 / 1!$
(B) $\mathrm{In} / 2^{\mathrm{n}}$
(C) $1+1 / 2^{3 / 2}+1 / 3^{3 / 2}+1 / 4^{3 / 2}+\ldots$
(D) $(\ln 2) / 2^{2}+(\ln 3) / 2^{3}+(\ln 4) / 2^{4}+\ldots$
(E) $\Sigma n^{n} / n!$

$$
\frac{\ln 3}{2^{t}} \frac{x}{\ln 2} \quad \frac{1}{2} \frac{\ln 3}{\ln 3}
$$

5. Which of the following alternating series diverges?
(A) $\Sigma(-1)^{n-1} / n$
(B) $\Sigma(-1)^{n+1}(n-1) /(n+1)$
$\frac{2 \sqrt{3 n}}{1}$
(C) $\Sigma(-1)^{n+1} \ln (n+1)$
(D) $\sum \frac{(-1)^{n-1}}{\sqrt{n}}$
(E) $\Sigma(-1)^{n-1} n / r^{2}+1$
6. Which of the following series converges conditionally?
(A) $3-1+1 / 9-1 / 27+\ldots$

B $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}-\ldots \ldots \ldots$.

$$
\frac{1}{3} \quad \frac{1}{9} \quad \frac{1}{3}
$$

(C) $1 / 2^{2}-1 / 3^{2}+1 / 4^{2}-\ldots$
(D) $1-1.1+1.21-1.332+\ldots$
(E) $1 /(1 * 2)-1 /(2 * 3)+1 /(3 * 4)-1 /(4 * 5)+\ldots$
7. Suppose $f(x)$ is a function with Taylor series converging to $f(x)$ for all $x \in \Re$.

If $f(0)=2, \quad f^{\prime}(0)=2$ and $f^{3}(0)=3$ for $n \geq 2$ then $f(x)=$
(A) $3 e^{x}+2 x-1$ \& 5
(B) $e^{3 x}+2 x+1 \quad 2$
(C) $e^{3 x}-x+1 \quad 2$
(1) $33 e^{x}-x-1 \quad 202$
(B) $3 e^{x}+5 x+5$
8. Which of the following -series converge?
(1) $\sum_{n=1}^{\infty} \frac{\ln \left(n^{-3}\right)}{n^{-3}}$
(II) $\sum_{n=1}^{\infty} \frac{\ln 3}{3 n}$
(A) I only
(B) II only
(D) None
(E) I and III

(C) IM inly
 \square

9. What is the Taylor series for $f(x)=e^{x}$ about $x=1$?
(A) $\sum_{n=0}^{\infty} \frac{-(x-1)^{n}}{n!}$
(B) $\sum_{x=0}^{\infty} \frac{-e(x-1)^{n}}{n!}$
(C) $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n!e}$ $\frac{x^{n}}{n!}$
(Iii) $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$

1
(b) $\sum_{n=0}^{\infty} \frac{n^{2 n}}{\left(1+2 n^{2}\right)^{n}} \Rightarrow$ converges beg the nith poot test absell

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2 n}}{\left(1+2 n^{2}\right)^{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{1+2 n^{2}}=\frac{1}{2}<\infty \Rightarrow \text { convirg.s }
\end{aligned}
$$

(c) $\sum_{i=1}^{\infty} \frac{n^{3}-\sqrt{n}+6}{n^{4}-n-3}$ diverges by limit conparison test.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{7}-\sqrt{n}+6}{n^{4}-n-3} \div \frac{1}{n} \\
& \lim _{n \rightarrow \infty} \frac{n^{4}-n^{\frac{3}{2}}+6 n}{n^{4}-n-3}
\end{aligned}
$$

$=1 \Rightarrow$ poth divengr orconveng $\frac{1}{n}$ diverges (power seties with $p=1$). \Rightarrow both diveng.

QUESTION THREE: [14 points]
So/ Consider the power series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n}}(x+3)^{n}$
(a.) When $x=-4$ does this series converge or diverge?
(b) Determine all values for which the series converges.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{\frac{(-2)^{n}}{4^{\frac{1}{2}}}(x+3)^{n}} \\
& =\frac{-2}{n^{\frac{1}{2 n}}}(x+3) \\
& \therefore \quad|x+3|<\frac{1}{2} \\
& \Rightarrow R=\frac{t}{n} \\
& -\frac{1}{2}<x+3<\frac{1}{2} \\
& -4<x<-2
\end{aligned}
$$

when $x=-4$

$$
\begin{gathered}
\sum \frac{(-2)^{n}(-1)^{n}}{\sqrt[n]{n}} \\
\lim _{n \rightarrow \infty} \frac{2^{n}}{\sqrt{n}} \div \frac{1}{\sqrt{n}} \\
\lim _{n \rightarrow \infty} 2^{n} \\
=\infty
\end{gathered}
$$

when $x=02$

$$
\sum \frac{(-2)^{n}}{\sqrt{n}}
$$

Converges conditionally b O. S.T景
\Rightarrow the series converges ont ie
both diving by L.C.C.T interval $(-4,-2)$

QUESTION FOUR: [16, points]
Consider the integral $\int x \cos \left(x^{3}\right) d x$.
(a) Write down the Maclaurin series for $\cos (x), \cos \left(x^{3}\right)$, and $x \cos \left(x^{3}\right)$.
(b) Evaluate $\int_{0}^{3} x \cos \left(x^{3}\right) d x$ as an infinite series.

$$
\begin{aligned}
\cos (x) & =\frac{(-1)^{n} x^{2 n}}{2 n!} \\
\cos \left(x^{3}\right) & =\frac{(-1)^{n} x^{\sigma x}}{2 n!}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(x^{9}\right)=y^{1}+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \\
& \begin{array}{l}
\operatorname{Cos}\left(x^{3}\right):=1+\frac{x^{6}}{2!}+\frac{x^{12}}{4!}+\frac{x^{18}}{6!} \\
x \operatorname{Cos}\left(x^{3}\right)=x+\frac{x^{1}}{2!}+\frac{x^{13}}{4!}+\frac{x^{4}}{6!}+\cdots
\end{array} \\
& \begin{array}{l}
\int_{0}^{1} x \cos \left(x^{3}\right)=x+\frac{x^{7}}{2!}+x^{12}+7 x^{19} \\
\int_{2}^{1} x \cos \left(x^{3}\right)=\left.\frac{2 x+x^{2}}{1}\right|_{0} ^{1}
\end{array} \\
& 1(3)-3 a^{2} \quad 7 \quad \therefore=a_{5} \\
& \begin{array}{l}
3 \% \\
\hline 2
\end{array}
\end{aligned}
$$

